Reference Condition 101

Thom Whittier
Oregon State University

What 3 Things Do

Reference Condition

&

Art

Have in Common??

- 1. You know it when you see it
- 2. It's really hard to define
- 3. People will disagree with your definition

- 1. You know it when you see it
- 2. It's really hard to define
- People will disagree with your definition
- 4. ...and will argue endlessly about it

Definitions & Terms

Reference Site

Reference Condition

Definitions & Terms

Reference Site

Reference Condition

Reference Condition

Reference: a Standard or Benchmark

For a River Monitoring program

- Condition: refers to Biological Integrity (Health)
 - How Natural is the structural & functional components of the Biological Assemblage?
 - How close is the taxonomic make-up (species and numbers) to Natural?

Terms That Describe Reference Condition

- Pristine, Undisturbed, Natural
- Minimally Disturbed
- Least Disturbed
- Best Potential, Best Attainable
- Historic

Best Term?

- Pristine, Undisturbed, Natural
- Minimally Disturbed
- Least Disturbed
- Best Potential, Best Attainable
- Historic

Determining Reference Condition

- Reference Sites Least Disturbed Sites
- Historic Reconstruction
- Modeling
- Professional Judgement

Determining Reference Condition

- Reference Sites Least Disturbed Sites
- Historic Reconstruction
- Modeling
- Professional Judgement

Selecting Least-Disturbed Sites

Issues

The words "Disturbance Scale" & "Least-Disturbed Sites" imply that we can quantify Overall Disturbance

- Disturbance is Multi-Dimensional
- Disturbance Measures are Context Sensitive
 - Ecological Context
 - Human Activity Context
 - Assessment Questions

- Some Disturbances are hard to measure
 - Expensive (e.g., pesticides)
 - Need long-term data
 - Lack Integrative Metrics (e.g., flow alteration)

 For many streams & rivers we lack quantitative measures of what the undisturbed would have been

Do all these Challenges Leave Us...

Selecting Least-Disturbed Sites

- Pick a variety of Disturbance Measures
- That address major kinds of Disturbance
 - e.g., Nutrients, Sedimentation, Land Use,
 Physical Habitat Alteration
- For which we have some understanding of their effects on Biological Integrity
- Which are routinely measured

Disturbance Measures

- Instream Chemical
 - Nutrients: Phosphorus, Nitrogen
 - Water Clarity: Turbidity
- Physical Habitat (site-scale)
 - Sedimentation: % Fines, Embeddedness
 - Riparian Vegetation Complexity
 - Visible Human Activity
- Landscape Disturbance
 - Road Density
 - % Agricultural, % Urban

Disturbance Assessment Approaches

- Herlihy Regional Criteria Screens
 - For each Ecoregion
 - For each Disturbance Measure
 - Select a Cutoff
 - Drop any site that exceeds any Cutoff Criteria

Disturbance Assessment Approaches

- Whittier Natural Gradients Screens
 - For each Ecoregion
 - For each Disturbance Measure
 - Along a major Natural Gradient
 - Select sites along Gradient with lowest
 Disturbance Measure values
 - Select sites with greatest number of leastdisturbed "hits"

Natural Gradient & Site Quality Co-vary

Natural Gradient & Site Quality Co-vary

Phosphorus

Phosphorus

Land in Agriculture

Land in Agriculture

Disturbance Assessment Approaches

- Principal Components Analysis
 - Combines multiple Disturbance Measures
 - e.g., combine Total-P, Total-N, & Turbidity into a single Nutrients Disturbance measure
 - Potentially combine a wide variety of Disturbance
 Measures if they are correlated
 - e.g., in EMAP-West combined 3 Physical Habitat,
 3 Landscape & 3 Nutrient/Clarity Measure which accounted for 47% of variability in PC-1

Disturbance Assessment Approaches

- "Delphi" Assessment
 - Run all of these assessments
 - Select all sites which pass all of the Assessments
 - Pitch all sites which fail all of the Assessments
 - Panel of experts evaluate in more detail sites which pass a subset of the Assessments

Other Issues

- Also Select Most-Disturbed Sites
 - Use same methods
 - Gives both ends of Stressor/Disturbance Gradient

Other Issues

- Where do you look for Least-Disturbed Sites?
 - Handpicked Sites?
 - Probability Design Sites?
 - Both?

Disturbance Class vs. Site "Origin" in EMAP West

	Least-		Most-
	Disturbed	Intermediate	Disturbed
Probability	20.1%	58.4%	21.4%
EMAP	35.7%	56.4%	8.9%
Handpicked			
State	33.8%	52.0%	14.2%
Handpicked			

Other Issues

- The larger the river, the greater the difficulty in selecting Least-Disturbed sites
 - They experience more kinds of disturbance
 - They experience greater intensity of disturbance
 - Disturbance effects tend to accumulate downstream
 - We (all) have less experience assessing them

Other Issues

- The larger the river, the greater the difficulty in selecting Least-Disturbed sites
 - They experience more kinds of disturbance
 - They experience greater intensity of disturbance
 - Disturbance effects tend to accumulate downstream
 - We (all) have less experience assessing them
- However, these are important systems and worth the effort.